| <b>SELECT</b> | THE CORRECT ALTE                                                        | RNATIVE (ONLY ONE                                      | CORRECT ANSWER)                              |                                   |  |  |  |  |
|---------------|-------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|-----------------------------------|--|--|--|--|
| 1.            | In a reaction $PCl_5$ $\Longrightarrow$ moles at equilibrium is         | PCl <sub>3</sub> + Cl <sub>2</sub> degree of diss      | ociation is 30%. If initial m                | oles of $PCl_5$ is one then total |  |  |  |  |
|               | (A) 1.3                                                                 | (B) 0.7                                                | (C) 1.6                                      | (D) 1.0                           |  |  |  |  |
| 2.            | For reaction HI — 1/2                                                   | $H_2 + \frac{1}{2}$ $I_2$ value of $K_c$ is            | $1/8$ then value of $\mathrm{K_c}$ for H     | 2 + I <sub>2</sub> ← 2HI.         |  |  |  |  |
|               | (A) $\frac{1}{64}$                                                      | (B) 64                                                 | (C) $\frac{1}{8}$                            | (D) 8                             |  |  |  |  |
| 3.            | In a equilibrium reaction $\Delta H = -3000$ calories,                  | $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$            | )                                            |                                   |  |  |  |  |
|               | which factor favours disso                                              | ociation of HI :-                                      |                                              |                                   |  |  |  |  |
|               | (A) Low temp.                                                           | (B) High Pressure                                      | (C) High temp.                               | (D) Low pressure.                 |  |  |  |  |
| 4.            | $N_2 + 3H_2 \rightleftharpoons 2NH_3$                                   |                                                        |                                              |                                   |  |  |  |  |
|               | If temp. of following equi                                              | ilibrium reaction increase t                           | hen -                                        |                                   |  |  |  |  |
|               | (A) Shift Right side                                                    | (B) Shift left side                                    | (C) Unchanged                                | (D) Nothing say.                  |  |  |  |  |
| 5.            | $C(s) + H_2O(g) \rightleftharpoons H_2(g) + CO(g)$                      |                                                        |                                              |                                   |  |  |  |  |
|               | by increasing pressure fo                                               | llowing equilibrium                                    |                                              |                                   |  |  |  |  |
|               | (A) Unaffected                                                          |                                                        | (B) Proceed in backward                      | direction                         |  |  |  |  |
|               | (C) Proceed in forward d                                                |                                                        | (D) Unfixed                                  |                                   |  |  |  |  |
| 6.            | Unit of equilibrium constant $K_c$ for following homogenous reaction :- |                                                        |                                              |                                   |  |  |  |  |
|               | $4NH_3 + 5O_2 \iff 4NO_2$                                               | 2                                                      |                                              |                                   |  |  |  |  |
|               | (A) (Conc <sup>n</sup> )-1                                              | (B) $(Conc^n)^{+1}$                                    | (C) (Conc <sup>n</sup> ) <sup>+10</sup>      | (D) Have no unit                  |  |  |  |  |
| 7.            | Which of the following fa                                               | ctor shifted the reaction P                            | $Cl_3 + Cl_2 \rightleftharpoons PCl_5$ at le | eft side.                         |  |  |  |  |
|               | (A) Adding PCl <sub>5</sub>                                             | (B) Increase pressure                                  | (C) Constant temp.                           | (D) Catalyst.                     |  |  |  |  |
| 8.            |                                                                         | process reaction is fastes                             |                                              |                                   |  |  |  |  |
| •             | (A) $K = 10$                                                            | (B) K = 1                                              | (C) $K = 10^3$                               | (D) $K = 10^{-2}$                 |  |  |  |  |
| 9.            | At 298 K equilibrium constant $K_1$ and $K_2$ of                        |                                                        |                                              |                                   |  |  |  |  |
|               |                                                                         | $+ \frac{1}{2}$ $O_2(g)$ $\Longrightarrow$ $SO_3(g)$   | (1)                                          |                                   |  |  |  |  |
|               | $2SO_3(g) \rightleftharpoons 2SO_2(g)$                                  | 2                                                      |                                              |                                   |  |  |  |  |
|               | The relation between $K_1$                                              | -                                                      |                                              |                                   |  |  |  |  |
|               | $(A) K_1 = K_2$                                                         | (B) $K_2 = K_1^2$                                      | (C) $K_2 = 1/K_1^2$                          | (D) $K_2 = 1/K_1$                 |  |  |  |  |
| 10.           | In the following reaction PC                                            | $l_5$ (g) $\rightleftharpoons$ $PCl_3$ (g) + $Cl_2$ (g |                                              | ckward reaction is increase by :  |  |  |  |  |
|               | (A) Inert gas mixed at co                                               |                                                        | (B) Cl <sub>2</sub> gas mixed at cons        |                                   |  |  |  |  |
|               | (C) Inert gas mixed at co                                               |                                                        | (D) PCl <sub>5</sub> mixed in consta         | nt volume.                        |  |  |  |  |
| 11.           | Some gaseous equilibrium                                                | n are tollowing :                                      |                                              |                                   |  |  |  |  |
|               | $CO + H_2O \stackrel{K}{\rightleftharpoons} CO_2$                       | + H <sub>2</sub>                                       |                                              |                                   |  |  |  |  |
|               | $2CO + O_2 \xrightarrow{K_1} 2CO_2$                                     |                                                        |                                              |                                   |  |  |  |  |

$$2H_2^+ O_2 \xrightarrow{K_2} 2H_2^-O$$

then find out the relation between equilibrium constants :-

$$(A) K = K K$$

(B) 
$$K = (K_1 K_2)$$

(A) 
$$K = K_1 K_2$$
 (B)  $K = (K_1 K_2)^2$  (C)  $K = (K_1 K_2)^{-1/2}$ 

(D) 
$$K = (K_1/K_2)^{1/2}$$

| 12. | 2. For the equilibrium process $x + y \implies xy$ . If the conc <sup>n</sup> of x and y is doubled, then equilibrium cons |                                                                          |                                                           |                                                               |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|--|--|--|
|     | (A) Become twice                                                                                                           | (B) Become half                                                          | (C) Unchanged                                             | (D) Become thrice                                             |  |  |  |
| 13. | _                                                                                                                          | re heated in closed vesse $\operatorname{Cl}_2$ . The value of equilibri |                                                           | quilibrium $40\%$ of $PCl_5$ was                              |  |  |  |
|     | (A) .267                                                                                                                   | (B) .53                                                                  | (C) 2.67                                                  | (D) 5.3                                                       |  |  |  |
| 14. | The reaction $A(g) + B(g)$                                                                                                 | $\rightleftharpoons$ 2C(g) is occur by                                   | mixing of 3 moles of A                                    | and 1 mole of B in one litre                                  |  |  |  |
|     | Container. if $\alpha$ of B is $\frac{1}{3}$                                                                               | , then $K_{_{\rm C}}$ for this reaction                                  | is :-                                                     |                                                               |  |  |  |
|     | (A) 0.12                                                                                                                   | (B) 0.25                                                                 | (C) 0.50                                                  | (D) 0.75                                                      |  |  |  |
| 15. | Reaction $2BaO_2(s)$ depends on :-                                                                                         | $ Arr$ 2BaO(s) + O <sub>2</sub> (g) ; $\Delta$ H                         | H = + ve. At equilibrium                                  | condition, Pressure of ${\rm O_2}$ is                         |  |  |  |
|     | (A) Increase mass of Bac                                                                                                   |                                                                          | (B) Increase mass of Bac                                  | O                                                             |  |  |  |
|     | (C) Increase temp. at Eq                                                                                                   | <sup>n</sup> .                                                           | (D) Increase mass of Bac                                  | O <sub>2</sub> and BaO both                                   |  |  |  |
| 16. | the volume of the reaction regarding the equilibrium                                                                       | on container is halved. For constant $(K_p)$ and degree                  | this change, which of the of dissociation ( $\alpha$ ) :- | g (g). At a fixed temperature, following statements held true |  |  |  |
|     | (A) Neither $K_p$ nor $\alpha$ characteristics (A) $K_p$ has a characteristic (A) $K_p$ and $K_p$                          |                                                                          | (B) Both $K_p$ and $\alpha$ - chan                        |                                                               |  |  |  |
|     | (C) $K_p$ changes, but $\alpha$ do                                                                                         |                                                                          | (D) K <sub>p</sub> does not change,                       | but $\alpha$ - changes                                        |  |  |  |
| 17. | $C(s) + CO_2(g) \rightleftharpoons 2C$                                                                                     |                                                                          |                                                           |                                                               |  |  |  |
|     | According to above react above reaction :-                                                                                 | ion, partial Pressure of CC                                              | O <sub>2</sub> & CO are 4 & 8 respec                      | tively then find out $K_{_{\mathrm{p}}}$ of the               |  |  |  |
|     | (A) 6                                                                                                                      | (B) 2                                                                    | (C) 16                                                    | (D) 32                                                        |  |  |  |
| 18. | For the reaction, A+B $\rightleftharpoons$ equilibrium is :-                                                               | $\longrightarrow$ C + D, $K_c = 9$ . If A                                | and B are taken in equal $\boldsymbol{a}$                 | amounts, then amount of C at                                  |  |  |  |
|     | (A) 1                                                                                                                      | (B) 0.25                                                                 | (C) 0.75                                                  | (D) None of these                                             |  |  |  |
| 19. | At equilibrium 500mL venture then what would be the                                                                        |                                                                          | each A, B, C, D. If 0 5                                   | M of C and D expelled out                                     |  |  |  |
|     | (A) 1                                                                                                                      | (B) $\frac{1}{9}$                                                        | (C) $\frac{4}{9}$                                         | (D) $\frac{5}{9}$                                             |  |  |  |
| 20. | The following equilibrium                                                                                                  |                                                                          | ` ' 9                                                     | . , 9                                                         |  |  |  |
| 20. | $N_2 + 3H_2 \Longrightarrow 2NH_3$                                                                                         |                                                                          |                                                           |                                                               |  |  |  |
|     |                                                                                                                            |                                                                          |                                                           |                                                               |  |  |  |
|     | $N_2 + O_2 \rightleftharpoons 2NO$                                                                                         |                                                                          |                                                           |                                                               |  |  |  |
|     | $H_2 + \frac{1}{2}O_2 \iff H_2O$                                                                                           | K <sub>3</sub>                                                           |                                                           |                                                               |  |  |  |
|     | The equilibrium constant                                                                                                   | of the reaction                                                          |                                                           |                                                               |  |  |  |
|     | $2NH_3 + \frac{5}{2}O_2 \iff 2N$                                                                                           | NO + 3 $H_2O$ , in terms of $F$                                          | $K_1$ , $K_2$ and $K_3$ is :                              |                                                               |  |  |  |
|     | (A) $\frac{K_1K_2}{K_3}$                                                                                                   | (B) $\frac{K_1 K_3^2}{K_2}$                                              | (C) $\frac{K_2K_3^3}{K_1}$                                | (D) K <sub>1</sub> K <sub>2</sub> K <sub>3</sub>              |  |  |  |
| 21. | The reaction A + B =                                                                                                       | $\implies$ C + D is studied in a                                         | one litre vessel at 250 C                                 | . The initial concentration of                                |  |  |  |
|     |                                                                                                                            |                                                                          |                                                           | concentration of C was found                                  |  |  |  |
|     | to the equal to the equilibrium concentration of B. What is the concentration of D at equilibrium :                        |                                                                          |                                                           |                                                               |  |  |  |

(B) (3n - 1/2)

(A) n/2

(C) (n - n/3)

(D) n

| 22. | In a reversible reaction A                                                       | $A \xrightarrow{k_1} B$ , the initial conc                     | entration of A and B are a                                                        | a and b in moles per litre and                        |  |  |  |
|-----|----------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
|     | the equilibrium concentra                                                        | ation are $(a - x)$ and $(b + x)$                              | x) respectively ; express x                                                       | in terms of $k_1$ , $k_2$ , a and $b$ :               |  |  |  |
|     | $\frac{k_1a - k_2b}{a}$                                                          | (B) $\frac{k_1 a - k_2 b}{k_1 - k_2}$                          | $\frac{k_1a - k_2b}{a}$                                                           | $\frac{k_1a + k_2b}{a}$                               |  |  |  |
|     | 1 2                                                                              | 1 2                                                            | $(C)$ $k_1k_2$                                                                    | $(D) k_1 + k_2$                                       |  |  |  |
| 23. | The value of $K_{p}$ for the                                                     | reaction                                                       |                                                                                   |                                                       |  |  |  |
|     | $2H_2O$ (g) + $2Cl_2O$ (g                                                        | $\rightarrow$ 4HCl (g) + O <sub>2</sub> (g                     | <u>(i)</u>                                                                        |                                                       |  |  |  |
|     |                                                                                  | when the partial pressure a                                    | are expressed in atmosph                                                          | ere then the value of $K_{_{\rm C}}$ for              |  |  |  |
|     | the same reaction is : $(A) 5.23 	 10^{-4}$                                      | (B) 7.34 10 <sup>-4</sup>                                      | (C) 3.2 10 <sup>-3</sup>                                                          | (D) 5.43 10 <sup>-5</sup>                             |  |  |  |
|     | ` ,                                                                              |                                                                |                                                                                   |                                                       |  |  |  |
| 24. | The equilibrium constant                                                         | of the reaction $SO_2(g) + \frac{1}{2}(g)$                     | $O_2(g) \longrightarrow SO_3(g)$ is 4                                             | $10^{-3}\text{atm}^{-1/2}.$ The equilibrium           |  |  |  |
|     | constant of the reaction                                                         | $2 SO_3(g) \rightleftharpoons 2 SO_2(g)$                       | $(g) + O_2(g)$ would be:                                                          |                                                       |  |  |  |
|     | (A) 250 atm                                                                      | (B) $4 	 10^3$ atm                                             | (C) $0.25 	 10^4 	 atm$                                                           | (D) $6.25 	 10^4 	 atm$                               |  |  |  |
| 25. | When alcohol ( $C_2H_5OH$ ) into ester. Then the $K_C$                           |                                                                | together in equimolar rati                                                        | o at 27 C, 33% is converted                           |  |  |  |
|     | · ·                                                                              |                                                                | OC U (() + U O (()                                                                |                                                       |  |  |  |
|     | $C_2 \Pi_5 O \Pi_4(t) + C \Pi_3 C$ (A) 4                                         | OOH $(\ell) \rightleftharpoons$ CH <sub>3</sub> COC<br>(B) 1/4 | (C) 9                                                                             | (D) 1/9                                               |  |  |  |
| 26  |                                                                                  |                                                                | ` '                                                                               |                                                       |  |  |  |
| 26. | is $1/9$ then :                                                                  | $O_1$ and $OO_2$ is taken in a                                 | one iii. Vessei. Ii $\mathbf{R}_{_{\mathbf{C}}}$ for $\mathbf{C}_{_{\mathbf{C}}}$ | $SO_3 + CO \Longrightarrow SO_2 + CO_2$               |  |  |  |
|     | (A) total no. of moles at equilibrium are less than 8                            |                                                                |                                                                                   |                                                       |  |  |  |
|     | (B) $n (SO_3) + n(CO_2) = 4$                                                     |                                                                |                                                                                   |                                                       |  |  |  |
|     | (C) $[n(SO_2)/n (CO)] < 1$                                                       |                                                                |                                                                                   |                                                       |  |  |  |
| 0.7 | (D) both (B) and (C)                                                             | 1 ( 100                                                        | 10 1 1 N O                                                                        | LO LO LNON                                            |  |  |  |
| 27. |                                                                                  |                                                                |                                                                                   | mol $O_2$ and 3 mol NO. No. found to be 0.04 mol/lit: |  |  |  |
|     | (A) (101/18)                                                                     | (B) (101/9)                                                    | (C) (202/9)                                                                       | (D) None of these                                     |  |  |  |
| 28. | Ammonia gas at 15 atm                                                            | is introduced in a rigid ve                                    | ssel at 300 K. At equilibr                                                        | ium the total pressure of the                         |  |  |  |
|     |                                                                                  | 0.11 atm at 300 C. The d                                       |                                                                                   |                                                       |  |  |  |
| 20  | (A) 0.6                                                                          | (B) 0.4                                                        | (C) unpredictable                                                                 | (D) none of these                                     |  |  |  |
| 29. | The degree of dissociation of $SO_3$ is $\alpha$ at equilibrium pressure $P_0$ : |                                                                |                                                                                   |                                                       |  |  |  |
|     | Kp for $2SO_3(g) \rightleftharpoons$                                             |                                                                | (O) ((D - 2) (Q(1 - )2)                                                           | (D) (4)                                               |  |  |  |
|     | -                                                                                | (B) $[(P_0 \alpha^3)/(2 + \alpha)(1-\alpha)^2]$                | _                                                                                 |                                                       |  |  |  |
| 30. | For the reaction $CO(g)$ + of $CO_2(g)$ can be increased                         |                                                                | - H <sub>2</sub> (g) at a given tempera                                           | ature the equilibrium amount                          |  |  |  |
|     | (A) adding a suitable cat                                                        | talyst                                                         | (B) adding an inert gas                                                           |                                                       |  |  |  |
|     | (C) decreasing the volum                                                         | ne of container                                                | (D) increasing the amou                                                           | int of CO (g)                                         |  |  |  |
| 31. | For the reaction:                                                                |                                                                |                                                                                   |                                                       |  |  |  |
|     | $PCl_{5}(g) \rightarrow PCl_{3}(g) +$                                            |                                                                |                                                                                   |                                                       |  |  |  |
|     |                                                                                  | constant temperature is f                                      |                                                                                   | goo of constant williams                              |  |  |  |
|     | (A) introducing an inert                                                         |                                                                | <ul><li>(B) introducing chlorine</li><li>(D) increasing the volum</li></ul>       |                                                       |  |  |  |
|     | (E) introducing PCl <sub>5</sub> at c                                            | gas at constant pressure                                       | ווען וווכופמאווע נוופ volum                                                       | ne of the container                                   |  |  |  |
|     | (2) minoducing i oi <sub>5</sub> at c                                            |                                                                |                                                                                   |                                                       |  |  |  |

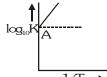
- 32. Given the following reaction at equilibrium  $N_2(g) + 3H_2(g) \rightleftharpoons 2 \text{ NH}_3(g)$ . Some inert gas at constant pressure is added to the system. Predict which of the following facts will be affected:
  - (A) more  $NH_3$  (g) is produced

(B) less NH<sub>3</sub> (g) is produced

(C) no affect on the equilibrium

- (D)  $K_{\scriptscriptstyle D}$  of the reaction is decreased
- 33. For an equilibrium  $H_2O$  (s)  $\Longrightarrow$   $H_2O$  ( $\ell$ ) which of the following statement is true :
  - (A) the pressure changes do not affect the equilibrium
  - (B) more of ice melts if pressure on the system is increased
  - (C) more of liquid freezes if pressure on the system is increase
  - (D) the pressure changes may increase or decrease the degree of advancement of the reaction depending upon the temperature of the system.
- 34. When a bottle of cold drink is opened, the gas comes out with a fizze due to :
  - (A) decrease in temperature

- (B) increase in pressure
- (C) decrease in pressure suddenly which results in decrease of solubility of CO, gas in water
- (D) none
- 35. The equilibrium,  $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$  is attained at 25 C in a closed container and an inert gas, helium, is introduced. Which of the following statements are correct:
  - (A) concentrations of  $SO_2$ ,  $Cl_2$  and  $SO_2Cl_2$  are changed
  - (B) no effect on equilibrium
  - (C) concentration of SO<sub>2</sub> is reduced
  - (D)  $K_{_{\mathrm{p}}}$  of reaction is increasing
- **36.** For the reaction  $H_2$  (g) +  $I_2$  (g)  $\Longrightarrow$  2HI (g)


 $K_{\rm C}$  = 66.9 at 350 C and  $K_{\rm C}$  = 50.0 at 448 C. The reaction has :

(A)  $\Delta H = +ve$ 

(B)  $\Delta H = -ve$ 

(C)  $\Delta H = Zero$ 

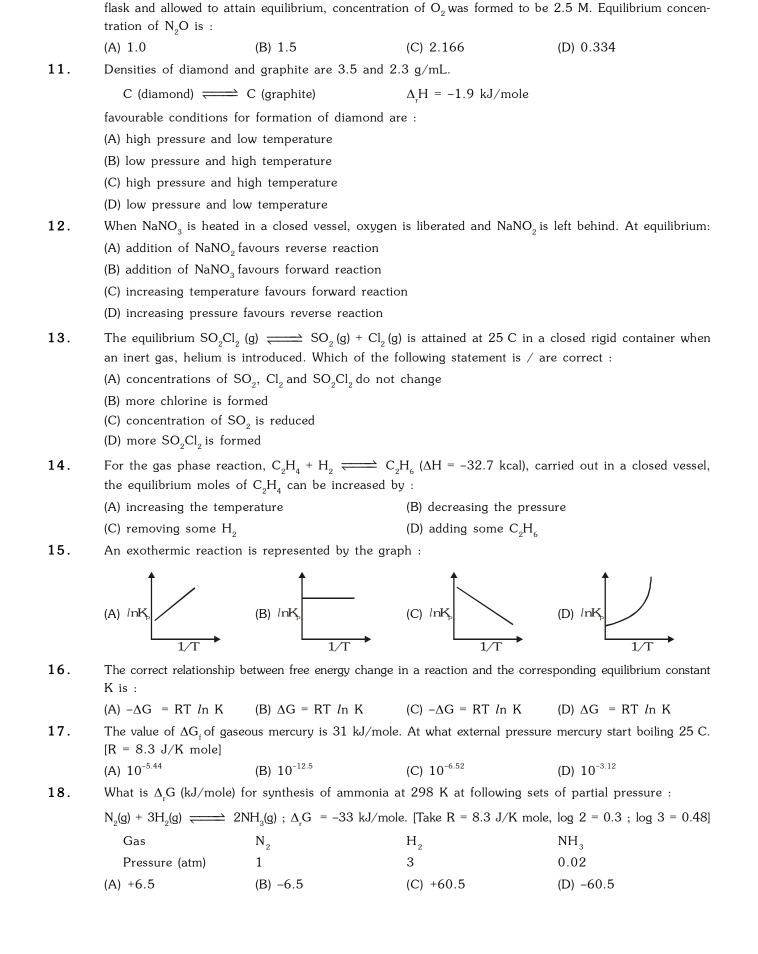
- (D)  $\Delta H$  = Not found the signs
- 37. Variation of  $\log_{10} K$  with  $\frac{1}{T}$  is shown by the following graph in which straight line is at 45, hence  $\Delta H$  is:



(A) +4.606 cal

(B) -4.606 cal

(C) 2 cal


(D) - 2cal

| CHEC | K YOU | R GRAS | SP |    |    | A  | NSW | ER F | KEY |    |    |    | E  | EXERCIS | SE -1 |
|------|-------|--------|----|----|----|----|-----|------|-----|----|----|----|----|---------|-------|
| Que. | 1     | 2      | 3  | 4  | 5  | 6  | 7   | 8    | 9   | 10 | 11 | 12 | 13 | 14      | 15    |
| Ans. | Α     | В      | С  | В  | В  | В  | Α   | С    | С   | В  | D  | С  | А  | В       | С     |
| Que. | 16    | 17     | 18 | 19 | 20 | 21 | 22  | 23   | 24  | 25 | 26 | 27 | 28 | 29      | 30    |
| Ans. | D     | С      | С  | А  | С  | Α  | Α   | Α    | D   | В  | D  | Α  | В  | В       | D     |
| Que. | 31    | 32     | 33 | 34 | 35 | 36 | 37  |      |     |    |    |    |    |         |       |
| Ans. | C,D,E | В      | В  | С  | В  | В  | В   |      |     |    |    |    |    |         |       |

# SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

| 1. | Consider following re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | action in equilibrium with                                            | equilibrium concentration                                                      | 0.01 M of every species                                                                              |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | (I) $PCl_5$ (g) $\rightleftharpoons$ P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Cl_3(g) + Cl_2(g)$                                                   |                                                                                |                                                                                                      |  |  |  |  |  |  |
|    | (II) 2HI (g) <del>←</del> H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (II) $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$                      |                                                                                |                                                                                                      |  |  |  |  |  |  |
|    | $(III) N_2 (g) + 3H_2 (g) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ===≥ 2NH <sub>3</sub> (g)                                             |                                                                                |                                                                                                      |  |  |  |  |  |  |
|    | Extent of the reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns taking place is :                                                  |                                                                                |                                                                                                      |  |  |  |  |  |  |
|    | (A) I > II > III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (B) I < II < III                                                      | (C) II < III < I                                                               | (D) III < I < II                                                                                     |  |  |  |  |  |  |
| 2. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g) + B (g) $\rightleftharpoons$ 2 C (g) at ure of 2.0 mol each of A,  |                                                                                | 9.0. What must be the volume ium?                                                                    |  |  |  |  |  |  |
|    | (A) 6 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) 9 L                                                               | (C) 36 L                                                                       | (D) None of these                                                                                    |  |  |  |  |  |  |
| 3. | $S_2^{2-}, S_3^{2-}, S_{4-}^{2-}$ and so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on. The equilibrium constant                                          | nt for the formation of $S_2^{2}$                                              | sulphide ions having formulae is $12 (K_1)$ & for the formation for the formation of $S_3^{2-}$ from |  |  |  |  |  |  |
|    | (A) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) 12                                                                | (C) 132                                                                        | (D) None of these                                                                                    |  |  |  |  |  |  |
| 4. | For the following gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es equilibrium                                                        | $N_2O_4$ (g) $\Longrightarrow$ 2 NO                                            | O <sub>2</sub> (g)                                                                                   |  |  |  |  |  |  |
|    | $K_{_{p}}$ is found to be equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al to $K_c$ . This is attained w                                      | vhen :                                                                         |                                                                                                      |  |  |  |  |  |  |
|    | (A) 0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) 273 K                                                             | (C) 1 K                                                                        | (D) 12.19 K                                                                                          |  |  |  |  |  |  |
| 5. | 3 atm at the same te $N_2(g) + 3H_2(g) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mperature when the follow $\Longrightarrow$ 2NH $_3$ (g). The equilib | ving equilibrium is attained prium constant $\mathrm{K}_{\mathrm{p}}$ for diss | ociation of $NH_3$ is :                                                                              |  |  |  |  |  |  |
|    | (A) $\frac{1}{0.5} \times (1.5)^3 \text{ atm}^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) $0.5 (1.5)^3$ atm <sup>2</sup>                                    | (C) $\frac{0.5 \times (1.5)^3}{3 \times 3}$ atm <sup>2</sup>                   | (D) $\frac{3 \times 3}{0.5 \times (1.5)^3} \text{ atm}^{-2}$                                         |  |  |  |  |  |  |
| 6. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at 300 K is left in a close $_4$ (g) decomposes to $NO_2$ (g          |                                                                                | n. It is heated to 600 K when e is :                                                                 |  |  |  |  |  |  |
|    | (A) 1.2 atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) 2.4 atm                                                           | (C) 2.0 atm                                                                    | (D) 1.0 atm                                                                                          |  |  |  |  |  |  |
| 7. | For the reaction : 2 HI constant $K_p$ by the expression $K_p$ by the expression $K_p$ is the expression $K_p$ by the expression $K_p$ by the expression $K_p$ is the expression $K_p$ by the express |                                                                       | e degree of dissociation ( $lpha$ )                                            | of Hl (g) is related to equilibrium                                                                  |  |  |  |  |  |  |
|    | (A) $\frac{1+2\sqrt{K_{p}}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) $\sqrt{\frac{1+2K_p}{2}}$                                         | (C) $\sqrt{\frac{2K_{p}}{1 + 2K_{p}}}$                                         | (D) $\frac{2\sqrt{K_{p}}}{1+2\sqrt{K_{p}}}$                                                          |  |  |  |  |  |  |
| 8. | The vapour density o temperature :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f $N_2^{}O_4^{}$ at a certain temper                                  | rature is 30. What is the                                                      | $\%$ dissociation of ${\rm N_2O_4}{\rm at}$ this                                                     |  |  |  |  |  |  |
|    | (A) 53.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (B) 106.6%                                                            | (C) 26.7%                                                                      | (D) None                                                                                             |  |  |  |  |  |  |
| 9. | For the reaction $PCl_5$ by :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(g) \iff PCl_3(g) + Cl_2(g),$                                        | , the forward reaction at co                                                   | onstant temperature is favoured                                                                      |  |  |  |  |  |  |
|    | (A) introducing an ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ert gas at constant volume                                            |                                                                                |                                                                                                      |  |  |  |  |  |  |
|    | (B) introducing chloris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne gas at constant volume                                             |                                                                                |                                                                                                      |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ert gas at constant pressure                                          | 2                                                                              |                                                                                                      |  |  |  |  |  |  |

(D) introducing  $PCl_5$  at constant volume



When  $N_2O_5$  is heated at temp. T, it dissociates as  $N_2O_5 \rightleftharpoons N_2O_3 + O_2$ ,  $K_C = 2.5$ . At the same time  $N_2O_3$  also decomposes as :  $N_2O_3 \rightleftharpoons N_2O + O_2$ . If initially 4.0 moles of  $N_2O_5$  are taken in 1.0 litre

10.

- 19. In a 7.0 L evacuated chamber, 0.50 mol  $H_2$  and 0.50 mol  $I_2$  react at 427 C.  $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ . At the given temperature,  $K_c = 49$  for the reaction.
- (i) What is the value of  $K_n$ ?
  - (A) 7

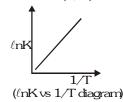
(B) 49

- (C) 24.5
- (D) None

- (ii) What is the total pressure (atm) in the chamber?
  - (A) 83.14
- (B) 831.4
- (C) 8.21
- (D) None
- How many moles of the iodine remain unreacted at equilibrium? (iii)
- (B) 0.112
- (D) 0.125
- (iv) What is the partial pressure (atm) of HI in the equilibrium mixture?
  - (A) 6.385
- (B) 12.77
- (D) 646.58
- $N_2 + O_2 \iff 2NO, K_1 ; \left(\frac{1}{2}\right)N_2 + \left(\frac{1}{2}\right)O_2 \iff NO, K_2$ 20.

2NO 
$$\Longrightarrow$$
  $N_2 + O_2$ ,  $K_3$ ; NO  $\Longrightarrow$   $\left(\frac{1}{2}\right)N_2 + \left(\frac{1}{2}\right)O_2$ ,  $K_4$ 

Correct relation between  $K_1$ ,  $K_2$ ,  $K_3$  and  $K_4$  is :


- (A)  $K_1 K_3 = 1$  (B)  $\sqrt{K_1} \times K_4 = 1$  (C)  $\sqrt{K_3} \times K_2 = 1$
- (D) None

- The equation,  $a = \frac{D-d}{(n-1)d}$  is correctly matched for : 21.
  - (A) A  $\Longrightarrow$  nB/2 + nC/3

(B) A  $\implies$  nB/3 + (2n/3)C

(C) A  $\rightarrow$  (n/2)B + (n/4)C

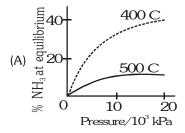
- (D) A  $\Longrightarrow$  (n/2)B + C
- Variation of equilibrium constant K for the reaction ; 2A (s) + B (g)  $\rightleftharpoons$  C(g) + 2D(g) is plotted against 22. absolute temperature T in figure as -  $\ell nK$  Vs (1/T) :

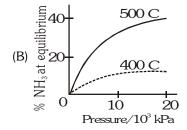


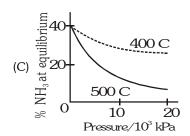
- (A) the forward reaction is exothermic
- (B) the forward reaction is endothermic
- (C) the slope of line is proportional to  $\Delta H$
- (D) adding 'A' favours forward reaction
- (E) removing C favours forward reaction
- 23. The equilibrium of which of the following reactions will not be disturbed by the addition of an inert gas at constant volume?
  - (A)  $H_2$  (g) +  $I_2$  (g)  $\rightleftharpoons$  2HI (g)
- (B)  $N_2O_4$  (g)  $\Longrightarrow$  2NO<sub>2</sub> (g)
- (C) CO (g) +  $2H_2$  (g)  $\rightleftharpoons$  CH<sub>3</sub>OH (g)
- (D)  $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$
- 24. An industrial fuel, 'water gas', which consists of a mixture of H2 and CO can be made by passing steam over red-hot carbon. The reaction is :

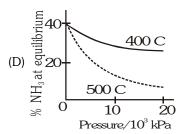
$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g), \Delta H = +131 \text{ kJ}$$

The yield of CO and  $H_2$  at equilibrium would be shifted to the product side by


- (A) raising the relative pressure of the steam
- (B) adding hot carbon
- (C) raising the temperature
- (D) reducing the volume of the system


25. The dissociation of ammonium carbamate may be represented by the equation :


$$NH_4CO_2NH_2$$
 (s)  $\Longrightarrow$   $2NH_3$  (g) +  $CO_2$  (g)


 $\Delta H^0$  for the forward reaction is negative. The equilibrium will shift from right to left if there is

- (A) a decrease in pressure
- (B) an increase in temperature
- (C) an increase in the concentration of ammonia
- (D) an increase in the concentration of carbon dioxide
- 26. The percentage of ammonia obtainable, if equilibrium were to be established during the Haber process, is plotted against the operating pressure for two temperatures 400 C and 500 C. Which of the following correctly represents the two graphs?









| BRAII | N TEAS | SERS |    |       |      |       | ANS  | WER   | KEY | ?     |         |     |       | EXERCIS | E -2 |
|-------|--------|------|----|-------|------|-------|------|-------|-----|-------|---------|-----|-------|---------|------|
| Que.  | 1      | 2    | 3  | 4     | 5    | 6     | 7    | 8     | 9   | 10    | 11      | 12  | 13    | 14      | 15   |
| Ans.  | В      | Α    | Α  | D     | В    | В     | D    | Α     | C,D | D     | С       | C,D | Α     | A,B,C,D | Α    |
| Que.  | 16     | 17   | 18 | 19(i) | (ii) | (iii) | (iv) | 20    | 21  | 22    | 23      | 24  | 25    | 26      |      |
| Ans.  | Α      | Α    | D  | В     | С    | В     | Α    | A,B,C | В   | A,C,E | A,B,C,D | A,C | B,C,D | Α       |      |

#### TRUE / FALSE

- 1. Van't Hoff's equation gives the quantitative relation between change in value of K with change in temperature.
- 2. The larger value of K indicates that the product is more stable relative to reactants.
- 3. The value of equilibrium constant changes with change in the initial concentration of the reactants.
- **4.** Extent of a reaction can always be increased by increasing the temperature.
- **5.**  $K_p$  is related to  $K_C$  as  $K_p = K_C (RT)^{\Delta n}$ .
- **6**. Introduction of inert gas in a gaseous reaction ( $\Delta n_g \neq 0$ ) at equilibrium keeping pressure constant has no effect on equilibrium state.
- 7. For the reaction,  $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ ,  $K_p = K_c(RT)$ .
- **8.** For a reaction the value of Q greater than K indicates that the net reaction is proceeding in backward direction.
- 9. Solubilities of all solids in water increase with increase in temperature.
- 10. Dissolution of all gases in water is accompained by evolution of heat.
- 11. For the reaction,  $N_2 + 3H_2 \implies 2NH_3$ , the equilibrium expression may be written as  $K = \frac{[NH_3]^2}{[N_2][H_2]^3}$ .
- 12. For the reaction,  $CaCO_3$  (s)  $\rightleftharpoons$  CaO (s) +  $CO_2$  (g),  $K_p = p_{CO_2}$ .
- 13. A catalyst increases the value of the equilibrium constant for a reaction.
- 14. If concentration quotient of reaction is less than K, the net reaction is proceeding in the backward direction.
- 15. In case of endothermic reaction, the equilibrium shifts in backward direction on increasing the temperature.
- **16.** The value of K increases with increase in pressure.
- 17. For the reaction,  $H_2 + I_2 \rightleftharpoons 2HI$ , the equilibrium constant, K is dimensionalless.
- 18. The reaction  $2SO_2$  (g) +  $O_2$  (g)  $\Longrightarrow$   $2SO_3$  (g),  $\Delta H = -X kJ$ , is favoured by high pressure and high temperature.
- 19. A very high value of K indicates that at equilibrium most of the reactants are converted into products.
- 20. The value of K for the reaction,  $N_2 + 3H_2 \rightleftharpoons 2NH_3$ , can be increased by applying high pressure or by using a catalyst.

#### FILL IN THE BLANKS

- 1. K for the reaction  $2 A + B \rightleftharpoons 2C$  is  $1.5 \ 10^{12}$ . This indicates that at equilibrium the concentration of ...... would be maximum.
- **2.** The reaction  $N_2 + O_2 \Longrightarrow 2NO$  Heat, would be favoured by ...... temperature.
- 3. K for the reaction  $X_2 + Y_2 \rightleftharpoons 2XY$  is 100 K for this reaction  $XY \rightleftharpoons \frac{1}{2}X_2 + \frac{1}{2}Y_2$  would be ......
- 4. Compared to K for the dissociation,  $2H_2S \rightleftharpoons 2H^+ + 2HS^-$ , then K' for the  $H^+ + HS^- \rightleftharpoons H_2S$  would have ..............
- **5.** The equilibrium constant for a reaction decreases with increase in temperature, the reaction must be ...................
- 7. For the reaction,  $N_2O_4$  (g)  $\Longrightarrow$   $2NO_2$  (g), at equilibrium, increase in pressure shifts the equilibrium in ....... direction.

- **8.**  $\Delta G$  is related to K by the relation ......
- 9. Vant Hoff's equation is ......
- **0.** When the reaction is at equilibrium, the value of  $\Delta G$  is .......
- 11. Dimensions of equilibrium constant,  $K_c$  for the reaction  $2NH_3 \rightleftharpoons N_2 + 3H_2$ , are ......
- 12. The value of K for a reaction can be changed by changing .......
- 13. The law of mass action was proposed by ......
- **14.** The degree of dissociation of  $PCl_5$  [ $PCl_5$  (g)  $\rightleftharpoons$   $PCl_3$  (g) +  $Cl_2$  (g)], ...... with increase in pressure at equilibrium.
- 15. If concentration quotient, Q is greater than  $K_c$ , the net reaction in taking place in ...... direction.
- **16.** The reaction,  $N_2 + 3H_2 \Longrightarrow 2NH_3$  would be favoured by ...... pressure.
- 17.  $K_p$  is related to  $K_c$  as ......
- 18. Solubility of a gas in water ..... with increase in temperature.
- **19.** Introduction of inert gas at constant volume to a gaseous reaction at equilibrium results in formation of ...... product.
- ${f 20}$ . The product is more stable than reactants in reaction having ...... K.

## MATCH THE COLUMN

| 1. | Column-I<br>(Reactions) |                                                             |     | Column-II<br>(Favourable conditions)       |  |  |  |  |
|----|-------------------------|-------------------------------------------------------------|-----|--------------------------------------------|--|--|--|--|
|    | (A)                     | Oxidation of nitrogen                                       | (p) | Addition of inert gas at constant pressure |  |  |  |  |
|    |                         | $N_2(g) + O_2(g) + 180.5 \text{ kJ} \Longrightarrow 2NO(g)$ |     |                                            |  |  |  |  |
|    | (B)                     | Dissociation of $N_2O_4(g)$                                 | (q) | Decrease in pressure                       |  |  |  |  |
|    |                         | $N_2O_4(g) + 57.2 \text{ kJ} \rightleftharpoons 2NO_2(g)$   |     |                                            |  |  |  |  |
|    | (C)                     | Oxidation of $\mathrm{NH}_3(g)$                             | (r) | Decrease in temperature                    |  |  |  |  |
|    |                         | $4NH_3(g) + 5O_2(g) \iff 4NO(g) + 6H_2O(g)$                 |     |                                            |  |  |  |  |
|    |                         | + 905.6 kJ                                                  |     |                                            |  |  |  |  |
|    | (D)                     | Formation of $NO_2(g)$                                      | (s) | Increase in temperature                    |  |  |  |  |
|    |                         | $NO(g) + O_3(g) \rightleftharpoons NO_2(g) + O_2(g)$        |     |                                            |  |  |  |  |
|    |                         | + 200 kJ                                                    |     |                                            |  |  |  |  |

| 2. |            | Column-I                                | Column-II |                                       |  |  |  |
|----|------------|-----------------------------------------|-----------|---------------------------------------|--|--|--|
|    | (Reaction) |                                         |           | (If $\alpha$ is negligiable w.r.t. 1) |  |  |  |
|    | (A)        | $2X(g) \rightleftharpoons Y(g) + Z(g)$  | (p)       | $\alpha = 2 \sqrt{K_c}$               |  |  |  |
|    | (B)        | $X(g) \rightleftharpoons Y(g) + Z(g)$   | (q)       | $\alpha = 3 \sqrt{K_c}$               |  |  |  |
|    | (C)        | $3X(g) \rightleftharpoons Y(g) + Z(g)$  | (r)       | $\alpha = (2K_c)^{1/3}$               |  |  |  |
|    | (D)        | $2X(g) \rightleftharpoons Y(g) + 2Z(g)$ | (s)       | $\alpha = \sqrt{K_c}$                 |  |  |  |

# **ASSERTION & REASON**

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement-I: The melting point of ice decreases with increase of pressure.

#### Because

Statement-II: Ice contracts on melting.

2. Statement-I: The equilibrium of  $A(g) \rightleftharpoons B(g) + C(g)$  is not affected by changing the volume.

#### Because

Statement-II: K for the reaction does not depend on volume of the container.

3. Statement-I: For the reaction  $A(g) \rightleftharpoons B(g) + C(g)$ ,  $K_p = 1$  atm. If we start with equal moles of all gases at 9 atm of initial pressure, then at equilibrium partial pressure of A increases.

#### Because

**Statement-II**: Reaction quotient  $Q_p > K_p$  hence equilibrium shifts in backward direction.

**Statement-I**: For a reaction at equilibrium, the Gibb's free energy of reaction is minimum at constant temp. and pressure.

#### Because

**Statement-II**: The Gibb's free energy of both reactants and products increases and become equal at equilibrium.

5. Statement-I: Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.

#### Because

Statement-II: Equilibrium constant depends upon the way in which the reaction is written.

**6.** Statement-I: For the reaction  $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$  if the volume of vessel is reduced to half of its original volume, equilibrium concentration of all gases will be doubled.

#### Because

**Statement-II**: According to Le Chatelier's principle, reaction shifts in a direction that tends to minimized the effect of the stress.

7. Statement-I: For the reaction at certain temperature

$$A(g) + B(g) \rightleftharpoons C(g)$$

there will be no effect by addition of inert gas at constant volume.

#### Because

Statement-II: Molar concentration of all gases remains constant.

8. Statement-I: The catalyst does not alter the equilibrium constant.

#### Because

**Statement-II**: For the catalysed reaction and uncatalysed reaction  $\Delta H$  remains same and equilibrium constant depends on  $\Delta H$ .

# COMPREHENSION BASED QUESTIONS

## Comprehension # 1

On July, 1, 2000, the combined tunnel and bridge connecting Denmark and Sweden was officially opened. It consists of a tunnel from Copenhagen to an artificial Island and a bridge from the island to Malmo in Sweden. The major construction materials employed are concrete and steel. This problem deals with chemical reactions relating to production and degradation of such materials.

Concrete is produced from a mixture of cement, water, sand and small stones. Cement consists primarly of calcium silicates and calcium aluminates formed by heating and grinding of clay and limestone. In the later steps of cement production may lead to formation of unwanted hemihydrate,  $CaSO_4 \cdot \frac{1}{2} H_2O$ . Consider the following reaction :

$$CaSO_4 : 2H_2O(s) \longrightarrow CaSO_4 : \frac{1}{2}H_2O(s) + 1\frac{1}{2}H_2O(g)$$

The following thermodynamic data apply at 25 C, standard pressure: 1.00 bar:

| Compound                                 | $H/(kJ \text{ mol}^{-1}) (\Delta H_f)$ | $S/(JK^{-1} mol^{-1})$ |
|------------------------------------------|----------------------------------------|------------------------|
| CaSO <sub>4</sub> . 2H <sub>2</sub> O(s) | -2021.0                                | 194.0                  |
| $CaSO_4 \cdot \frac{1}{2} H_2O(s)$       | -1575.0                                | 130.5                  |
| H <sub>2</sub> O(g)                      | -241.8                                 | 188.6                  |

Gas constant ;  $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ 

1.  $\Delta H$  for the transformation of 1.00 kg of  $CaSO_4 \cdot 2H_2O(s)$  to  $CaSO_4 \cdot \frac{1}{2}H_2O(s)$  is :

(A) +446 kJ

(B) +484 kJ

(C) -446 kJ

(D) -484 kJ

2. Equilibrium pressure (in bar) of water vapour in a closed vessel containing  $CaSO_4$ .  $2H_2O(s)$ ,  $CaSO_4(s)$ .  $\frac{1}{2}H_2O(s)$  and  $H_2O$  (g) at 25 C is :

(A)  $7.35 10^{-4}$  bar

(B)  $2.15 10^{-4}$  bar

(C)  $8.10 10^{-3}$  bar

(D)  $7.00 10^{-4} bar$ 

**3.** Temperature at which the equilibrium water vapour pressure is 1.00 bar.

(A) 107 C

(B) 380 C

(C) 215 C

(D) 240 C

## Comprehension # 2

Questions are based on the manufacture of Na2CO3 by Solvay process :

In the manufacture of Na2CO3(s) by Solvay process, NaHCO3(s) is decomposed by heating :

$$2\text{NaHCO}_3(s) \rightleftharpoons \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$

$$K_p = 0.23 \text{ at } 100 \text{ C} \qquad \Delta H = 136 \text{ kJ}$$

1. If a sample of  $NaHCO_3$  (s) is brought to a temperature of 100 C in a closed container total gas pressure at equilibrium is:

(A) 0.96 atm

(B) 0.23 atm

(C) 0.48 atm

(D) 0.46 atm

- 2. A mixture of 1.00 mol each of NaHCO $_3$ (s) and Na $_2$ CO $_3$ (s) is introduced into a 2.5 L flask in which  $P_{CO_2}$  = 2.10 atm and  $P_{H_2O}$  = 0.94 atm. When equilibrium is established at 100 C, then partial pressure of :
  - (A)  $CO_2(g)$  and  $H_2O(g)$  will be greater than their initial pressure
  - (B)  $CO_2(g)$  and  $H_2O(g)$  will be less than their initial pressure
  - (C)  $CO_2(g)$  will be larger and that of  $H_2O(g)$  will be less than their initial pressure
  - (D)  $\mathrm{H_2O}(\mathrm{g})$  will be larger and that of  $\mathrm{CO_2}(\mathrm{g})$  will be less than their initial pressure

| MISC | ELLANEOUS TYPE Q                                            | UESTION                               | SWER KEY                                 | EXERCISE -3                          |
|------|-------------------------------------------------------------|---------------------------------------|------------------------------------------|--------------------------------------|
| •    | True / False                                                |                                       |                                          |                                      |
| :    | <b>1</b> . T                                                | <b>2.</b> T                           | <b>3.</b> F                              | <b>4</b> . F                         |
|      |                                                             | <b>6.</b> F                           | <b>7</b> . T                             | 8. T                                 |
| !    | <b>9</b> . F                                                | <b>10</b> . T                         | <b>11</b> . T                            | <b>12</b> . T                        |
|      |                                                             | <b>14.</b> F                          | <b>15</b> . F                            | <b>16</b> . F                        |
|      | <b>17</b> . T                                               | <b>18.</b> F                          | <b>19</b> . T                            | <b>20</b> . F                        |
| • 4  | Fill in the Blanks                                          | Ē                                     |                                          |                                      |
|      | <b>1</b> . C                                                | 2. high                               | 3. $\frac{1}{10}$                        | <b>4.</b> $\frac{1}{\sqrt{K}}$       |
| ;    | 5. exothermic                                               | $6. 	 K_{P} = K_{C} (RT)$             | 7. backward                              | 8. $\Delta G = -RT \ln K$            |
|      | 9. $\log \frac{K_2}{K_1} = \frac{\Delta H^{\circ}}{2.303R}$ | $\left[\frac{T_2-T_1}{T_2T_1}\right]$ | 10. zero                                 | 11. mol <sup>2</sup> L <sup>-2</sup> |
|      | <b>12.</b> temperature                                      | 13. Guldberg and Waag                 | e <b>14</b> . decreases                  | <b>15</b> . backward                 |
|      | <b>16</b> . high                                            | 17. $K_p = K_C (RT)^{\Delta n}$       | 18. decreases                            | 19. same amount of                   |
| :    | <b>20.</b> large value of                                   |                                       |                                          |                                      |
| • 4  | Match the Colum                                             | <u>ın</u>                             |                                          |                                      |
| :    | <b>1.</b> A - (s), B - (p,q,s), C                           | - (p,q,r), D - (r)                    | <b>2.</b> A - (p), B - (s), C - (q), D - | · (r)                                |
| • 4  | <u> Assertion - Reas</u>                                    | on Questions                          |                                          |                                      |
|      | <b>1.</b> A                                                 | <b>2.</b> D                           | <b>3</b> . A                             | <b>4</b> . C                         |
| ;    | <b>5</b> . A                                                | <b>6.</b> B                           | <b>7.</b> A                              | <b>8.</b> A                          |
| • •  | Comprehension E                                             | Based Questions                       |                                          |                                      |
| (    | Comprehension #1                                            | : <b>1</b> . B <b>2</b> . C           | <b>3</b> . A                             |                                      |

**2**. B

Comprehension #2 : 1. A

# Reaction quotient and equillibrium constant

1. The initial concentration or pressure of reactants and products are given for each of the following systems. Calculate the reaction quotient and determine the directions in which each system will shift to reach equilibrium.

(a)  $2NH_3$  (g)  $\rightleftharpoons$   $N_2$  (g)  $+ 3H_2$  (g) = 1.00 M ; = 1.00 M ; = 1.00 M ; = 1.00 M ;

(b)  $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$   $K_p = 6.8 10^4 atm^2$ Initial pressure :  $NH_3 = 3.0 atm$  ;  $N_2 = 2.0 atm$  ;  $H_2 = 1.0 atm$ 

(c)  $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$  K = 0.230 atm  $[SO_3] = 0.00 \text{ M} ; [SO_2] = 1.00 \text{ M} ; [O_2] = 1.00 \text{ M}$ 

(d)  $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$   $K_p = 16.5 \text{ atm}$ Initial pressure :  $SO_3 = 1.0 \text{ atm}$  ;  $SO_2 = 1.0 \text{ atm}$  ;  $O_2 = 1.0 \text{ atm}$ 

(e)  $2NO(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$   $K = 4.6 10^4$   $[NO] = 1.00 M ; [Cl_2] = 1.00 M ; [NOCl] = 0 M$ 

- 2. Among the solubility rules, the statement that all chlorides are soluble except  $Hg_2Cl_2$ , AgCl,  $PbCl_2$ , and CuCl.
  - (a) Write the expression for the equilibrium constant for the reaction represented by the equation AgCl (s)  $\Longrightarrow$   $Ag^+(aq) + Cl^-(aq)$

Is K greater than 1, less than 1, or about equal to 1? Explain your answer.

(b) Write the expression for the equilibrium constant for the reaction represented by the equation  $Pb^{2+}(aq) + 2Cl^{-}(aq) \rightleftharpoons PbCl_{2}$  (s)

Is K greater than 1, less than 1, or about equal to 1? Explain your answer.

**3.** Benzene is one of the compounds used as octane enhancers in unleaded gasoline. It is manufactured by the catalytic conversion of acetylene to benzene.

$$3C_2H_2 \longrightarrow C_6H_6$$

Would this reaction be most useful commercially if K were about 0.01, about 1, or about 10? Explain your answer.

**4.** For which of the following reactions will the equilibrium mixture contain an appreciable concentration of both reactants and products?

(a)  $Cl_2(g) \rightleftharpoons 2Cl(g)$ ;  $K_c = 6.4 10^{-39}$ 

(b)  $\text{Cl}_2(g) + 2\text{NO}(g) \iff 2\text{NOCl}(g)$ ;  $K_c = 3.7 \cdot 10^8$ 

(c)  $Cl_2(g) + 2NO_2(g) \rightleftharpoons 2NO_2Cl(g)$ ;  $K_c = 1.8$ 

5. The value of  $K_c$  for the reaction 3  $O_2$  (g)  $\rightleftharpoons$   $2O_3$  (g) is 1.7  $10^{-56}$  at 25 C. Do you expect pure air at 25 C to contain much  $O_3$  (ozone) when  $O_2$  and  $O_3$  are in equilibrium? If the equilibrium concentration of  $O_2$  in air at 25 C is 8  $10^{-3}$  M, what is the equilibrium concentration of  $O_3$ .

- 6. At 1400 K,  $K_c = 2.5 10^{-3}$  for the reaction  $CH_4(g) + 2H_2S \rightleftharpoons CS_2(g) + 4H_2(g)$ . A 10.0 L reaction vessel at 1400 K contains 2.0 mol of  $CH_4$ , 3.0 mol of  $CS_2$ , 3.0 mol of  $CS_2$ , and 4.0 mol of  $CS_2$ . Is this reaction mixture at equilibrium? If not, in which direction does the reaction proceed to reach equilibrium?
- 7. An equilibrium mixture of  $N_2$ ,  $H_2$  and  $NH_3$  at 700 K contains 0.036 M  $N_2$  and 0.15 M  $H_2$ . At this temperature,  $K_c$  for the reaction  $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$  is 0.29. What is the concentration of  $NH_3$ ?
- 8. The air pollutant NO is produced in automobile engines from the high temperature reaction  $N_2$  (g) +  $O_2$  (g)  $\rightleftharpoons$  2NO (g);  $K_c = 1.7 10^{-3}$  at 2300 K. If the initial concentrations of  $N_2$  and  $O_2$  at 2300 K are both 1.40 M, what are the concentration of NO,  $N_2$  and  $O_2$  when the reaction mixture reaches equilibrium?
- 9. At a certain temperature, the reaction  $PCl_5$  (g)  $\Longrightarrow$   $PCl_3$  (g) +  $Cl_2$  (g) has an equilibrium constant  $K_c = 5.8 10^{-2}$ . Calculate the equilibrium concentrations of  $PCl_5$ ,  $PCl_3$  and  $Cl_2$  if only  $PCl_5$  is present initially, at a concentration of 0.160 M.
- 10. At 700 K,  $K_p = 0.140$  for the reaction  $ClF_3$  (g)  $\rightleftharpoons$  ClF (g) +  $F_2$  (g). Calculate the equilibrium partial pressure of  $ClF_3$ , ClF and  $F_2$  if only  $ClF_3$  is present initially; at a partial pressure of 1.47 atm.

## Homogeneous equilibria degree of dissociation, vapour density and equilibrium constant

- 11. The degree of dissociation of  $N_2O_4$  into  $NO_2$  at 1.5 atmosphere and 40 C is 0.25. Calculate its  $K_p$  at 40 C. Also report degree of dissociation at 10 atmospheric pressure at same temperature.
- 12. At 46 C,  $K_p$  for the reaction  $N_2O_4$  (g)  $\rightleftharpoons$  2NO<sub>2</sub> (g) is 0.667 atm. Compute the percent dissociation of  $N_2O_4$  at 46 C at a total pressure of 380 Torr.
- 13. When 36.8 g  $N_2O_4$  (g) is introduced into a 1.0 litre flask at 27 C. The following equilibrium reaction occurs :

$$N_2O_4$$
 (g)  $\Longrightarrow$  2NO<sub>2</sub> (g) ;  $K_p = 0.1642$  atm.

- (a) Calculate  $K_c$  of the equilibrium reaction.
- (b) What are the number of moles of  $N_2O_4$  and  $NO_2$  at equilibrium?
- (c) What is the total gas pressure in the flask at equilibrium?
- (d) What is the percent dissociation of  $N_2O_4$ ?
- 14. At some temperature and under a pressure of 4 atm,  $PCl_5$  is 10% dissociated. Calculate the pressure at which  $PCl_5$  will be 20% dissociated, temperature remaining same.
- 15. In a mixture of  $N_2$  and  $H_2$  in the ratio of 1 : 3 at 64 atmospheric pressure and 300 C, the percentage of ammonia under equilibrium is 33.33 by volume. Calculate the equilibrium constant of the reaction using the equation.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- 16. The system  $N_2O_4 \rightleftharpoons 2 NO_2$  maintained in a closed vessel at 60 C & pressure of 5 atm has an average (i.e. observed) molecular weight of 69, calculate  $K_p$ . At what pressure at the same temperature would the observed molecular weight be (230/3)?
- 17. The vapour density of  $N_2O_4$  at a certain temperature is 30. Calculate the percentage dissociation of  $N_2O_4$  at this temperature.  $N_2O_4$  (g)  $\rightleftharpoons$   $2NO_2$  (g).
- 18. In the esterification  $C_2H_5OH(\ell) + CH_3COOH(\ell) \rightleftharpoons CH_3COOC_2H_5(\ell) + H_2O(\ell)$  an equimolar mixture of alcohol and acid taken initially yields under equilibrium, the water with mole fraction = 0.333. Calculate the equilibrium constant.

#### Hetrogeneous equilibrium

- 19. Solid Ammonium carbamate dissociates as :  $NH_2COONH_4$  (s)  $\Longrightarrow$   $2NH_3$  (g) +  $CO_2$  (g). In a closed vessel solid ammonium carbamate is in equilibrium with its dissociation products. At equilibrium, ammonia is added such that the partial pressure of  $NH_3$  at new equilibrium now equals the original total pressure. Calculate the ratio of total pressure at new equilibrium to that of original total pressure.
- A sample of  $CaCO_3$  (s) is introduced into a sealed container of volume 0.821 litre & heated to 1000 K until equilibrium is reached. The equilibrium constant for the reaction  $CaCO_3$  (s)  $\rightleftharpoons$  CaO (s) + CO<sub>2</sub> (g) is  $4 \quad 10^{-2}$  atm at this temperature. Calculate the mass of CaO present at equilibrium.
- 21. Anhydrous calcium chloride is often used as a dessicant. In the presence of excess of  $CaCl_2$ , the amount of the water taken up is governed by  $K_p = 6.4 10^{85}$  for the following reaction at room temperature,  $CaCl_2$ (s) +  $6H_2O$ (g)  $\Longrightarrow$   $CaCl_2$ .  $6H_2O$ (s). What is the equilibrium vapour pressure of water in a closed vessel that contains  $CaCl_2$ (s)?
- 22. 20.0 grams of  $CaCO_3$  (s) were placed in a closed vessel, heated & maintained at 727 C under equilibrium  $CaCO_3$  (s)  $\rightleftharpoons$  CaO (s) +  $CO_2$  (g) and it is found that 75% of  $CaCO_3$  was decomposed. What is the value of  $K_p$ ? The volume of the container was 15 litres.

## Changes in concentration at equilibrium Le Chatelier's principle

23. Suggest four ways in which the concentration of hydrazine,  $N_2H_4$ , could be increased in an equilibrium described by the equation

$$N_2(g) + 2H_2(g) \rightleftharpoons N_2H_4(g)$$
  $\Delta H = 95 \text{ kJ}$ 

24. How will an increase in temperature and increase in pressure affect each of the following equilibria?

(a) 
$$2NH_3$$
 (g)  $\rightleftharpoons$   $N_2$  (g) +  $3H_2$  (g)  $\Delta H = 92 \text{ kJ}$ 

(b) 
$$N_2(g) + O_2(g) \longrightarrow 2NO(g)$$
  $\Delta H = 181 \text{ kJ}$ 

(c) 
$$2O_3$$
 (g)  $\longrightarrow$  3  $O_2$  (g)  $\Delta H = -285 \text{ kJ}$ 

(d) CaO (s) + CO<sub>2</sub> (g) 
$$\rightleftharpoons$$
 CaCO<sub>3</sub> (s)  $\Delta H = -176 \text{ kJ}$ 

25. (a) Water gas, a mixture of  $H_2$  and CO, is an important industrial fuel produced by the reaction of steam with red-hot coke, essentially pure carbon. Write the expression for the equilibrium constant for the reversible reaction.

C (s) + 
$$H_2O$$
 (g)  $\rightleftharpoons$  CO (g) +  $H_2$  (g)  $\Delta H = 131.30 \text{ kJ}$ 

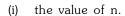
- (b) Assume that equilibrium has been established and predict how the concentration of each reactant and product will differ at a new equilibrium if (1) more C is added. (2) H<sub>2</sub>O is removed. (3) CO is added (4) the pressure on the system is increased. (5) the temperature of the system is increased.
- 26. Ammonia is weak base that reacts with water according to the equation

$$NH_{2}$$
 (aq) +  $H_{2}O$  ( $l$ )  $\Longrightarrow$   $NH_{4}^{+}$  (aq) +  $OH^{-}$  (aq)

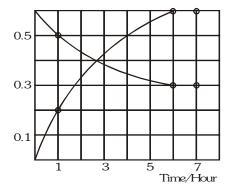
Will any of the following increase the percent of ammonia that is converted to the ammonium ion in water?

- (a) Addition of NaOH.
- (b) Addition of HCl.
- (c) Addition of NH<sub>4</sub>Cl.
- 27. Suggest two ways in which equilibrium concentration of  $Ag^+$  can be reduced in a solution of  $Na^+$ ,  $Cl^-$ ,  $Ag^+$  and  $NO_3^-$ , in contact with solid AgCl.

$$Na^{+}$$
 (aq) +  $Cl^{-}$  (aq) +  $Ag^{+}$  (aq) +  $NO_{3}^{-}$  (aq)  $\Longrightarrow$  AgCl (s) +  $Na^{+}$  (aq) +  $NO_{3}^{-}$  (aq)  $\Delta H = -65.9$  kJ


- 28. Consider a general single-step reaction of the type  $A + B \rightleftharpoons C$ . Show that the equilibrium constant is equal to the ratio of the rate constant for the forward and reverse reaction,  $K_c = K_e/K_c$ .
- 29. Consider the reaction of chloromethane with OH in aqueous solution

$$CH_3Cl$$
 (aq) +  $OH^-$  (aq)  $\stackrel{k_f}{\longleftarrow}$   $CH_3OH$  (aq) +  $Cl^-$  (aq)


At 25 C, the rate constant for the forward reaction is 6  $10^{-6} \, \text{M}^{-1} \, \text{s}^{-1}$ , and the equilibrium constant K<sub>c</sub> is 1  $10^{16}$ . Calculate the rate constant for the reverse reaction at 25 C.



A === nB with time, is presented in figure, Determine



- (ii) the equilibrium constant K.
- (iii) the initial rate of conversion of A.



# Temperature dependence of equilibrium constant

31. Listed in the table are forward and reverse rate constants for the reaction 2NO (g)  $\Longrightarrow$   $N_2$  (g) +  $O_2$  (g)

| Temperature (K) | $k_{f} (M^{-1}s^{-1})$ | $k_{r}^{}$ $(M^{-1}s^{-1})$ |
|-----------------|------------------------|-----------------------------|
| 1400            | 0.29                   | $1.1  10^{-6}$              |
| 1500            | 1.3                    | $1.4 	 10^{-5}$             |

Is the reaction endothermic or exothermic?

32. Rate of disappearance of the reactant A at two different temperature is given by A  $\Longrightarrow$  B

$$\frac{-d[A]}{dt} = (2 \quad 10^{-2} \text{ S}^{-1}) [A] - 4 \quad 10^{-3} \text{ S}^{-1} [B] ; 300 \text{ K}$$

$$\frac{-d[A]}{dt} = (4 \quad 10^{-2} \text{ S}^{-1}) [A] -16 \quad 10^{-4} \text{ S}^{-1} [B] ; 400 \text{ K}$$

Calculate heat of reaction in the given temperature range. When equilibrium is set up.

33. The  $K_p$  for reaction A + B  $\stackrel{\longrightarrow}{\longleftarrow}$  C + D is 1.34 at 60 C and 6.64 at 100 C. Determine the free energy change of this reaction at each temperature and  $\Delta H$  for the reaction over this range of temperature?

# Equilibrium expressions and equilibrium constants

- 34. If  $K_c = 7.5 10^{-9}$  at 1000 K for the reaction  $N_2$  (g) +  $O_2$  (g)  $\rightleftharpoons$  2NO (g), what is  $K_c$  at 1000 K for the reaction 2NO (g)  $\rightleftharpoons$   $N_2$  (g) +  $O_2$  (g)?
- 35. A sample of HI (9.30  $10^{-3}$  mol) was placed in an empty 2.00 L container at 1000 K. After equilibrium was reached, the concentration of  $I_2$  was 6.29  $10^{-4}$  M. Calculate the value of  $K_c$  at 1000 K for the reaction  $H_2$  (g) +  $I_2$  (g)  $\rightleftharpoons$  2HI (g).
- 36. The vapour pressure of water at 25 C is 0.0313 atm. Calculate the values of  $K_p$  and  $K_c$  at 25 C for the equilibrium  $H_oO(\ell) \rightleftharpoons H_oO(g)$ .

- 37. For each of the following equilibria, write the equilibrium constant expression for  $K_c$ . Where appropriate, also write the equilibrium constant expression for  $K_p$ .
  - (a)  $Fe_2O_3$  (s) + 3CO (g)  $\rightleftharpoons$  2Fe ( $\ell$ ) + 3 CO<sub>2</sub> (g)
  - (b)  $4\text{Fe}(s) + 3 O_2(g) \rightleftharpoons 2\text{Fe}_2O_3(s)$
  - (c)  $BaSO_4$  (s)  $\Longrightarrow$  BaO (s) +  $SO_3$  (g)
  - (d)  $BaSO_4$  (s)  $\rightleftharpoons$   $Ba^{2+}$  (aq)  $+ SO_4^{2-}$  (aq)

#### General problems

- 38. When 0.5 mol of  $N_2O_4$  is placed in a 4.00 L reaction vessel and heated at 400 K, 79.3 % of the  $N_2O_4$  decomposes to  $NO_9$ .
  - Calculate  $K_c$  and  $K_p$  at 400 K for the reaction  $N_2O_4$  (g)  $\Longrightarrow$  2  $NO_2$  (g).
- 39. At 100 K, then value of  $K_c$  for the reaction  $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$  is 3.0  $10^{-2}$ . Calculate equilibrium concentrations of  $H_2O$ ,  $CO_2$  and  $H_2$  in the reaction mixture obtained by heating 6.0 mole of steam and an excess of solid carbon in a 5.0 L container. What is the molar composition of the equilibrium mixture?
- When 1.0 mol of  $PCl_5$  is introduced into a 5.0 L container at 500 K, 78.5 % of the  $PCl_5$  dissociates to given an equilibrium mixture of  $PCl_5$ ,  $PCl_3$  and  $Cl_2$ .

$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$

- (a) Calculate the values of K and K.
- (b) If the initial concentrations in a particular mixture of reactants and products are  $[PCl_5] = 0.5 \text{ M}$ ,  $[PCl_3] = 0.15 \text{ M}$ , and  $[Cl_2] = 0.6 \text{ M}$ , in which direction does the reaction proceed to reach equilibrium? What are the concentrations when the mixture reaches equilibrium?

#### Thermodynamic and equilibrium constant

41.  $\alpha$ -D-Glucose undergoes mutarotation to  $\beta$ -D-Glucose in aqueous solution. If at 298 K there is 60% conversion. Calculate  $\Delta G$  of the reaction.

$$\alpha$$
-D-Glucose  $\Longrightarrow$   $\beta$ -D-Glucose

**42**. For the reaction at 298 K

$$A(g) + B(g) \rightleftharpoons C(g) + D(g)$$

$$\Delta H = -29.8 \text{ kcal}$$
;  $\Delta S = -0.1 \text{ kcal/K}$ 

Calculate  $\Delta G$  and K.

43. The equilibrium constant of the reaction 2  $C_3H_6$  (g)  $\rightleftharpoons$   $C_2H_4$  (g) +  $C_4H_8$  (g) is found to fit the expression

$$\ell nK = -1.04 - \frac{1088}{T}$$

Calculate the standard reaction enthalpy and entropy at 400 K.

- **44.**  $PCl_5$  dissociates according to the reaction  $PCl_5$  (g)  $\rightleftharpoons$   $PCl_3$  (g) +  $Cl_2$  (g). At 523 K,  $K_p$  =1.78 atm. Find the density of the equilibrium mixture at a total pressure of 1 atm.
- 45. The following data for the equilibrium composition of the reaction

2 Na (g) 
$$\Longrightarrow$$
 Na<sub>2</sub> (g)

at 1.013 MP pressure and 1482.53 K have been obtained.

mass 
$$\%$$
 Na (monomer gas) =  $71.3$ 

mass 
$$\%$$
 Na<sub>2</sub> (dimer gas) = 28.7

Calculate the equilibrium constant K<sub>n</sub>.

- A certain gas A polymerizes to a small extent at a given temperature & pressure,  $nA \rightleftharpoons A_n$ . Show that the gas obeys the approx equation  $\frac{PV}{RT} = \left[1 \frac{(n-1)K_c}{V^{n-1}}\right]$  where  $K_c = \frac{\left[A_n\right]}{\left[A\right]^n}$  & V is the volume of the container. Assume that initially one mole of A was taken in the container.
- **47.** When 1 mole of A (g) is introduced in a closed rigid 1 litre vessel maintained at constant temperature the following equilibria are established.

 $A \ (g) \ \ \ \ \ \ \ B(g) \ + \ \ C(g) \quad : \quad \ K_{_{C_{_1}}}$ 

 $C (g) \rightleftharpoons D(g) + B(g) : K_{C_g}$ 

The pressure at equilibrium is twice the initial pressure. Calculate the value of  $\frac{K_{C_2}}{K_{C_1}}$  if  $\frac{[C]_{eq}}{[B]_{eq}} = \frac{1}{5}$ 

- **1.** (a) 25, shifts left,
- (b) 0.22, shifts right,
- (c) ∞, shifts left,
- (d) 1, shifts right,
- (e) 0, shifts right
- 2. (a) K = [Ag+] [Cl-] is less than 1. AgCl is insoluble thus the concentration of ions are much less than 1 M
  - (b)  $K = 1/[Pb^{2+}]$  [Cl<sup>-</sup>]<sup>2</sup> is greater than one because PbCl<sub>2</sub> is insoluble and formation of the solid will reduce the concentration of ions to a low level.
- **3.** K about 10

**4.** c

- ~ 9 10<sup>-32</sup> mol/L
- **6.** The reaction is not in equilibrium because  $Q_c > K_c$ . The reaction will proceed from right to left to reach equilibrium.
- 7. 5.9 10<sup>-3</sup> M

- **8.** [NO] = 0.056 M,  $[N_2]$  =  $[O_2]$  = 1.37 M
- **9.**  $[PCl_3] = [Cl_2] = 0.071 \text{ M}, [PCl_5] = 0.089 \text{ M}$  **10.**  $P_{CIF} = P_{F_2} = 0.389 \text{ atm}, P_{CIF_3} = 1.08 \text{ atm}$
- **11.** $K_p = 0.4$ ,  $\alpha = 0.1$

- **12.** 50%
- **13.** (a)  $6.667 10^{-3}$  mol L<sup>-1</sup>; (b) n (N<sub>2</sub>O<sub>4</sub>) = 0.374 mol; n (NO<sub>2</sub>) = 0.052 mol; (c) 10.49 atm (d) 6.44%
- **14.** 0.97 atm

- **15.**  $K_p = 1.3 10^{-3} \text{ atm}^{-2}$
- **16.**  $K_{p} = 2.5$  atm , P = 15 atm
- **17.** 53.33%
- 18. K = 4
- 19. 31/27

**20.** 22.4 mg

- **21.**  $P_{H_0O} = 5$  $10^{-15}$ atm
- **22.** 0.821 atm

- **23.** add  $N_2$ , add  $H_2$ , increase the pressure, heat the reaction
- 24. (a) shift right, shift left, (b) shift right, no effect, (c) shift left, shift left, (d) shift left, shift right
- **25.** (a)  $K = [CO][H_0] / [H_0O]$ ;
  - (b) in each of the following cases the mass of carbon will change, but its concentration (activity) will no change.
- 1. [H<sub>2</sub>O] no change, [CO] no change, [H<sub>2</sub>] no change;
- 2. [H<sub>2</sub>O] decrease, [CO] decrease, [H<sub>2</sub>] decrease;
- 3. [H<sub>2</sub>O] increase, [CO] increase, [H<sub>2</sub>] decrease;
- 4. [H<sub>2</sub>O] increase, [CO] decrease, [H<sub>2</sub>] decrease;
- [H<sub>2</sub>O] decrease, [CO] increase, [H<sub>2</sub>] increase;
- **26**.b
  - 27. Add NaCl or some other salt that produces Cl-in the solution. Cool the solution
- **28.**  $k_f [A][B] = k_r [C] ; \frac{k_f}{k_r} = \frac{[C]}{[A][B]} = k_c$
- **29**. 6  $10^{-22}$
- **30.** (i) 2; (ii) 1.2 mol/L; (iii) 0.1 moles/hr

- **31.** The reaction is exothermic
- 32. 16.06 kJ
- **33**. -810 J/mol ; -5872 J/mol and 41.3 kJ/mol

**34.** 1.3  $10^{8}$ 

**35.** 29.0

- **36.**  $K_n = 0.0313$  atm,  $K_s = 1.28 10^{-3}$
- **38.**  $K_c = 1.51, K_n = 49.6$

- **39.**  $[CO] = [H_0] = 0.18 \text{ M}$ ;  $[H_0O] = 1.02 \text{ M}$
- **40.** (a)  $K_c = 0.573$  and  $K_p = 23.5$ ; (b) to the right,  $[PCl_5] = 0.365$  M;  $[PCl_3] = 0.285$  M;  $[Cl_2] = 0.735$  M
- **41**. -1.005 kJ/mol

- **42.**  $\Delta G = 0$ ; K = 1
- **43.**  $\Delta H = 9.04 \text{ kJ/mol}$ ;  $\Delta S = -8.64 \text{ J/mol}^{-1} \text{ K}^{-1}$
- **44.** 2.71 g/L
- **45.**  $P_{Na} = 0.843 \text{ M Pa}, P_{Na_0} = 0.170 \text{ M Pa}, k_p = 0.293$
- **46**. To be proved
- **47**. 4

1. 0.15 mole of CO taken in a 2.5 litre flask is maintained at 750 K along with a catalyst so that the following reaction can take place;

$$CO(g) + 2H_{2}(g) \rightleftharpoons CH_{2}OH(g).$$

Hydrogen is introduced untill the total pressure of the system is 8.5 atm at equilibrium and 0.08 mole of methanol is formed. Calculate :

- (i)  $K_p \& K_c$ ;
- (ii) the final pressure if the same amount of CO and  $H_2$  as before are used, but with no catalyst so that the reaction does not take place.
- 2. In a vessel, two equilibrium are simultaneously established at the same temperature as follows:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 .....(i)

$$N_2(g) + 2H_2(g) \longrightarrow N_2H_4(g)$$
 .....(ii)

Initially the vessel contains  $N_2$  and  $H_2$  in the molar ratio of 9:13. The equilibrium pressure is  $7P_0$ , in which pressure due to ammonia is  $P_0$  and due to hydrogen is  $2P_0$ . Find the values of equilibrium constant  $(K_p$ 's) for both the reactions.

3. The decomposition of solid ammonium carbamete,  $(NH_4)(NH_2CO_2)$ , to gaseous ammonia and carbon dioxide is an endothermic reaction.

$$(NH_4)$$
  $(NH_2CO_2)$  (s)  $\Longrightarrow$   $2NH_2(g) + CO_2(g)$ 

- (a) When solid (NH $_4$ ) (NH $_2$ CO $_2$ ) is introduced into an evacuated flask at 25 C, the total pressure of gas at equilibrium is 0.116 atm. What is the value of K $_{\rm D}$  at 25 C?
- (b) Given that the decomposition reaction is at equilibrium, how would the following changes affect the total quantity of  $NH_3$  in the flask once equilibrium is re-established?
- (i) Adding CO<sub>2</sub>
- (ii) Adding (NH<sub>4</sub>) (NH<sub>2</sub>CO<sub>2</sub>)
- (iii) Removing CO<sub>2</sub>
- (iv) Increasing the total volume
- (v) Adding neon
- (vi) Increasing the temperature
- **4.** A container contains three gases. A, B and C in equilibrium A  $\Longrightarrow$  2B + C

At equilibrium the concentration of A was 3 M, and of B was 4 M. On doubling the volume of container, the new equilibrium concentration of B was 3 M. Calculate  $K_{\rm C}$  and initial equilibrium concentration of C.

5. The density of an equilibrium mixture of  $N_2O_4$  and  $NO_2$  at 1 atm and 346 K is 1.8 g/L. Calculate  $K_C$  for the reaction.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

**6.** At 90 C, the following equilibrium is established :

$$H_2(g) + S(s) \rightleftharpoons H_2S(g)$$

If 0.2 mol of hydrogen and 1.0 mol of sulphur are heated to 90 C in a 1.0 litre vessel, what will be the partial pressure of  $H_2S$  at equilibrium?

 $K_{p} = 6.8 10^{-2}$ 

- 7. At 817 C,  $K_p$  for the reaction between pure  $CO_2$  and excess hot graphite to form 2CO(g) is 10 atm.
  - (a) What is the analysis of the gases at equilibrium at 817 C & a total pressure of 4.0 atm? What is the partial pressure of  $CO_2$  at equilibrium?
  - (b) At what total pressure will the gas mixture analyze 6%,  $CO_2$  by volume ?
- 8. For the reaction  $N_2O_4 \rightleftharpoons 2NO_2$ , equilibrium mixture contains  $NO_2$  at P=1.1 atm &  $N_2O_4$  at P=0.28 atm at 350 K. The volume of the container is doubled. Calculate the equilibrium pressures of the two gases when the system reaches new equilibrium.

- 9. The degree of dissociation of HI at a particular temperature is 0.8. Find the volume of 1.5 M sodium thiosulphate solution required to react completely with the iodine present at equilibrium in acidic conditions, when 0.135 mol each of  $H_2$  and  $I_2$  are heated at 440 K in a closed vessel of capacity 2.0 L.
- 10. A mixture of hydrogen & iodine in the mole ratio 1.5:1 is maintained at 450 C. After the attainment of equilibrium  $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ , it is found on analysis that the mole ratio of  $I_2$  to HI is 1:18. Calculate the equilibrium constant & the number of moles of each species present under equilibrium, if initially,  $127\ g$  of iodine were taken.
- 11. The equilibrium constant for the reaction  $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$  is 7.3 at 450 C & 1 atm pressure. The initially concentration of water gas [CO &  $H_2$  in equimolar ratio] & steam are 2 moles & 5 moles respectively. Find the number of moles of CO,  $H_2$ ,  $CO_2$  &  $H_2O$  (vapour) at equilibrium.
- 12. At 1200 C, the following equilibrium is established between chlorine atoms & molecule.

$$Cl_2(g) \rightleftharpoons 2Cl(g)$$

The composition of equilibrium mixture may be determined by measuring the rate of effusion of the mixture through a pin hold. It is found that at  $1200 \, \text{C}$  and  $1 \, \text{atm}$  pressure the mixture effuses  $1.16 \, \text{times}$  as fast as krypton effuses under the same condition. Calculate the equilibrium constant  $K_c$ .

- 13. Two solids X and Y dissociate into gaseous products at a certain temperature as follows :
  - $X(s) \rightleftharpoons A(g) + C(g)$ , and  $Y(s) \rightleftharpoons B(g) + C(g)$ . At a given temperature, pressure over excess solid X is 40 mm and total pressure over solid Y is 60 mm. Calculate :
  - (a) the values of K<sub>n</sub> for two reactions (in mm)
  - (b) the ratio of moles of A and B in the vapour state over a mixture of X and Y.
  - (c) the total pressure of gases over a mixture of X and Y.
- SO<sub>3</sub> decomposes at a temperature of 1000 K and at a total pressure of 1.642 atm. At equilibrium, the density of mixture is found to be 1.28 g/L in a vessel of 90 litres. Find the degree of dissociation of SO<sub>3</sub> for SO<sub>3</sub>  $\Longrightarrow$  SO<sub>2</sub> + 1/2O<sub>2</sub>.
- 15. The density of an equilibrium mixture of  $N_2O_4$  and  $NO_2$  at 101.32 KP<sub>a</sub> is 3.62 g dm<sup>-3</sup> at 288 K and 1.84 g dm<sup>-3</sup> at 348 K. What is the heat of the reaction for  $N_2O_4 \rightleftharpoons 2NO_2(g)$ .
- 16. The equilibrium constant for the following reaction at 1395 K.

$$2H_2O \Longrightarrow 2H_2 + O_2 \qquad K_1 = 2.1 \quad 10^{-13}$$

$$2CO_2 \Longrightarrow 2CO + O_2 \qquad K_2 = 1.4 \quad 10^{-12}$$

Calculate the value of K for the reaction :  $H_2 + CO_2 \rightleftharpoons CO + H_2O$ 

- A saturated solution of iodine in water contains 0.33 g  $I_2/L$ . More than this can dissolve in a KI solution because of the equilibrium :  $I_2$  (aq) +  $I^-$  (aq)  $\rightleftharpoons$   $I_3^-$  (aq). A 0.10 M KI solution (0.10 MI) actually dissolves 12.5 g of iodine/L, most of which is converted to  $I_3^-$ . Assuming that the concentration of  $I_2$  in all saturated solutions is the same, calculate the equilibrium constant for the above reaction. What is the effect of adding water to a clear saturated of  $I_2$  in the KI solution?
- 18. A mixture of  $N_2$  &  $H_2$  are in equilibrium at 600 K at a total pressure of 80 atm. If the initial ratio of  $N_2$  and  $H_2$  are 3 : 1 and at equilibrium  $NH_3$  is 10% by volume, calculate  $K_p$  of reaction at given temperature.
- 19.  $\Delta G$  (298 K) for the reaction  $1/2N_2 + 3H_2 \stackrel{K_1}{\longleftarrow} NH_3$  is -16.5 kJ mol<sup>-1</sup>. Find the equilibrium constant (K<sub>1</sub>) at 25 C. What will be the equilibrium constants K<sub>2</sub> and K<sub>3</sub> for the following reactions :

$$\begin{array}{c} N_2 + 3H_2 & \xrightarrow{K_2} & 2NH_3 \\ NH_3 & \xrightarrow{K_3} & 1/2 \ N_2 + 3/2 \ H_2 \end{array}$$

20. When NO &  $NO_2$  are mixed, the following equilibria are readily obtained;

$$2NO_2 \rightleftharpoons N_2O_4$$
  $K_p = 6.8 \text{ atm}^{-1}$   
 $NO + NO_2 \rightleftharpoons N_2O_3$   $K_p = ?$ 

In an experiment when NO & NO $_2$  are mixed in the ratio of 1 : 2, the total final pressure was 5.05 atm & the partial pressure of  $N_2O_4$  was 1.7 atm. Calculate :

(a) the equilibrium partial pressure of NO. (b)  $K_p$  for NO + NO $_2 \rightleftharpoons N_2O_3$ 

Solid  $NH_4I$  on rapid heating in a closed vessel at 357 C develops a constant pressure of 275 mm Hg owing to partial decomposition of  $NH_4I$  into  $NH_3$  and HI but the pressure gradually increases further (when the excess solid residue remains in the vessel) owing to the dissociation of HI. Calculate the final pressure developed at equilibrium.

$$NH_4I(s) \rightleftharpoons NH_3(g) + HI(g)$$

$$2HI(g) \iff H_2(g) + I_2(g), K_c = 0.065 \text{ at } 357 \text{ C}$$

- 23. Given are the following standard free energies of formation at  $298~\mathrm{K}.$

CO(g) 
$$CO_2(g)$$
  $H_2O(g)$   $H_2O(l)$   $\Delta_tG / kJ \text{ mole}^{-1}$   $-137.17$   $-394.36$   $-228.57$   $-237.13$ 

(a) Find  $\Delta_r^{\rm G}$  and the standard equilibrium constant  $K_p^0$  at 298 K for the reaction

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$

- (b) If CO,  ${\rm CO_2}$  and  ${\rm H_2}$  are mixed so that the partial pressure of each is 101.325 kPa and the mixture is brought into contact with excess of liquid water, what will be the partial pressure of each gas when equilibrium is attained at 298 K. The volume available to the gases is constant.
- **24.** For the reaction

$$C_2H_6$$
 (g)  $\rightleftharpoons$   $C_2H_4$ (g) +  $H_2$ (g)

 $K_p^{~0}$  is 0.05 and  $\Delta_r G$  is 22.384 kJ mol<sup>-1</sup> at 900 K. If an initial mixture comprising 20 mol of  $C_2 H_6$  and 80 mol of  $N_2$  (inert) is passed over a dehydrogenation catalyst at 900 K, what is the equilibrium percentage composition of the effluent gas mixture? The total pressure is kept at 0.5 bar. Given:  $\Delta_r S = 135.143$  J K<sup>-1</sup> mol<sup>-1</sup> at 300 K. Calculate  $\Delta_r G$  at 300 K. (Assume  $\Delta_r C_p = 0$ ).

# BRAIN STORMING SUBJECTIVE EXERCISE

# ANSWER KEY

EXERCISE-4(B)

- 1. (i)  $k_C = 187.85 \text{ mol}^{-2} \text{ lit}^2$ ,  $k_P = 0.05 \text{ atm}^{-2}$  (ii)  $P = 12.438 \text{ atm}^{-2}$
- **2.**  $K_{P_1} = \frac{1}{20P_0^2}, K_{P_2} = \frac{3}{20P_0}$
- $oldsymbol{3}$ . (a) 2.31  $10^{-4}$  (b) (i) decrease (ii) no change (iii) increase (iv) increase (v) no change (vi) increase
- **4.** 20.0

**5.** 12.8

- **6.** 0.379 atm
- 7. (i)  $p(CO_2) = 0.938$  atm (ii)  $P_{Total} = 0.68$ atm 8.  $P_{NO_2} = 0.64$  atm,  $P_{N_2O_4} = 0.095$  atm
- **9.** V = 144 mL

- **10.**  $k_C = 54$ ,  $n_{HI} = 0.9$  mol,  $n_{I_2} = 0.05$  mol,  $n_{H_2} = 0.3$  mol
- **11.**  $n_{CO_2} = 0.938$ ,  $n_{H_2} = 1.938$ ,  $n_{CO} = 0.062$ ,  $n_{H_2O} = 4.062$

**12.** 6.3 10<sup>-4</sup>

**13.** (a)  $400 \text{ mm}^2$ ,  $900 \text{ mm}^2$  (b) 4:9 (c) 72.11 mmHg

**14.**  $\alpha = 0.5$ 

**15.**  $\Delta_{\rm r} H = 75.68 \text{ kJ mol}^{-1}$ 

**16.** k = 2.58

17. K = 707.2 backward reaction is favoured

**18.** 1.032 10<sup>-3</sup>

- **19.**  $K_1 = 779.4$ ,  $K_2 = 6.074$   $10^5$ ;  $K_3 = 1.283$   $10^{-3}$
- **20.** (a) 1.05 atm (b) 3.43 atm<sup>-1</sup>

**21**. 337 mmHg

- **22.**  $K_p = 1.862 10^{12} atm^{-1/2}$
- **23.** (a)  $\Delta G = -28.62 \text{ kJ/mole}$  (b)  $P_{CO_2} = 202.44 \text{ kPa}, P_{H_2O} = 3.16 \text{ kPa}, P_{CO} = 0.2 \text{ kPa}, K_p = 1.039 \quad 10^5 \quad \text{S}$
- **24.** 103.47 kJ/mol

|    | EKOISE - 03 [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JEE-[MAINS] : PREVI                                                                                           | OUS TEAR QUESTIONS                              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1. | Reaction $CO_{(g)} + \frac{1}{2} O_{2(g)} \longrightarrow CO_{2(g)}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The value of $\frac{\mathrm{K_{P}}}{\mathrm{K_{c}}}$ is -                                                     | [AIEEE-2002]                                    |
|    | (A) $\frac{1}{RT}$ (B) $\sqrt{RT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C) $\frac{1}{\sqrt{RT}}$ (D) RT                                                                              |                                                 |
| 2. | One of the following equilibrium is not aff (A) $PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$ (C) $N_2(g) + O_2 \longrightarrow 2NO(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fected by change in volume of the (B) $N_2(g) + 3H_2(g)$ (D) $SO_2Cl_2(g)$                                    | ≥ 2NH <sub>3</sub> (g)                          |
| 3. | For the reaction equilibrium, $N_2O_4$ (g) $\longrightarrow$ $2NO_2$ (g) the concerning $1.2  10^{-2}$ mol $L^{-1}$ respectively. The value (A) $3  10^{-3}$ mol $L^{-1}$ (B) $3  10^3$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ie of $K_C$ for the reaction is-                                                                              | [AIEEE-2003]                                    |
| 4. | Consider the reaction equilibrium $2SO_{2(g)}^{}+O_{2(g)}^{}$ $\longrightarrow$ $2SO_{3(g)}^{}$ ; $\Delta H=-1$ On the basis of Le-Chatelier's principle, the constant of the temperature and increase (B). Any value of temperature as well as (C). Lowering of temperature as well as (D). Increasing temperature as well as present the constant of the consta | he condition favourable for the for<br>asing the pressure<br>pressure<br>pressure                             | [AIEEE-2003] ward reaction is -                 |
| 5. | What is the equilibrium expression for the (A) $K_C = [P_4O_{10}] / [P_4] [O_2]^5$ (C) $K_C = [O_2]^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | reaction $P_{4(s)} + 5O_{2(g)} = P_4O_{4(s)}$<br>(B) $K_C = [P_4O_{10}] / 5 [P_4]$<br>(D) $K_C = 1 / [O_2]^5$ |                                                 |
| 6. | For the reaction $CO_{(g)} + Cl_{2(g)}$ $\longrightarrow$ $CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\operatorname{Cl}_{2(g)}$ the $\dfrac{\operatorname{K}_{P}}{\operatorname{K}_{C}}$ is equal to -             | [AIEEE-2004]                                    |
|    | (A) $\frac{1}{RT}$ (B) RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) √RT                                                                                                       | (D) 1.0                                         |
| 7. | The equilibrium constant for the reaction N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $N_{2(g)} + O_{2(g)} = 2NO_{(g)}$ at temperature                                                              | erature T is $4 	ext{ } 10^{-4}$ . The value of |
|    | $\rm K_{\rm C}$ for the reaction $\rm NO_{\rm (g)}$ — $\frac{1}{2}\rm N_{2\rm (g)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $+ \frac{1}{2} O_{2(g)}$                                                                                      | [AIEEE-2004]                                    |
|    | (A) $2.5 	 10^2$ (B) $50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) $4 	 10^{-4}$                                                                                             | (D) 0.02                                        |
| 8. | For the reaction $2NO_{2(g)}$ $\Longrightarrow$ $2NO_{(g)}$ + $k_c$ are compared at $184$ C it is found that (A) $K_p$ is less than $K_c$ (B) $K_p$ is greater than $K_c$ (C) Whether $K_p$ is greater than, less than (D) $K_p = K_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t                                                                                                             | [AIEEE-2005]                                    |
| 9. | The exothermic formation of $ClF_3$ is repr<br>$Cl_{2(g)} + 3F_{2(g)} = 2ClF_{3(g)}$ ; $\Delta H_r = -3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | [AIEEE-2005]                                    |
|    | Which of the following will increase the quantum (A) Removing $\operatorname{Cl}_2$ (C) Adding $\operatorname{F}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               | erature                                         |

- A schematic plot of  $\ell n$   $K_{_{\!\!eq}}$  verus inverse of temperature for a reaction is shown below. The reaction must be [AIEEE-2005]
  - (A) endothermic
  - (B) exothermic
  - (C) highly spontaneous at ordinary temperature
  - (D) one with negligible enthalpy change



Phosphorus pentachloride dissociates as follows, in a closed reaction vessel,

[AIEEE-2006]

$$PCl_{5}(g) \longrightarrow PCl_{3}(g) + Cl_{2}(g)$$

If total pressure at equilibrium of the reaction mixture is P and degree of dissociation of  $PCl_5$  is x, the partial pressure of PCl3 will be-

(A) 
$$\left(\frac{2x}{1-x}\right)P$$

(B) 
$$\left(\frac{x}{x-1}\right) P$$
 (C)  $\left(\frac{x}{1-x}\right) P$  (D)  $\left(\frac{x}{x+1}\right) P$ 

(C) 
$$\left(\frac{x}{1-x}\right)I$$

(D) 
$$\left(\frac{x}{x+1}\right)P$$

The equilibrium constant for the reaction  $SO_3(g)$   $\Longrightarrow$   $SO_2(g) + \frac{1}{2}O_2(g)$  is  $K_C = 4.9 \ 10^{-2}$ . The value of  $K_C$  for

the reaction [AIEEE-2006]

2SO<sub>2</sub>(g) + O<sub>2</sub>(g) 
$$\longrightarrow$$
 2SO<sub>3</sub>(g) will be (A) 2.40 10<sup>-3</sup> (B) 9.8 10<sup>-2</sup>

- (C) 4.9 10<sup>-2</sup>
- The equlibrium constants  $K_{p_1}$  and  $K_{p_2}$  for the reaction X  $\Longrightarrow$  2Y and Z  $\Longrightarrow$  P + Q, respectively are in the ratio of 1:9. If the degree of dissociation of X and Z be equal then the ratio of total pressure at these equilibria is [AIEEE-2008]
  - (A) 1:36
- (B) 1 : 1
- (C) 1:3
- (D) 1:9
- A vessel at  $1000~\mathrm{K}$  contains  $\mathrm{CO}_2$  with a pressure of  $0.5~\mathrm{atm}$ . Some of the  $\mathrm{CO}_2$  is converted into  $\mathrm{CO}$  on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :-

[AIEEE-2011]

- (A) 0.3 atm
- (B) 0.18 atm
- (C) 1.8 atm
- (D) 3 atm
- The equilibrium constant  $(K_C)$  for the reaction  $N_2(g) + O_2(g) \longrightarrow 2NO(g)$  at temperature T is
  - 4  $10^{-4}$ . The value of  $K_C$  for the reaction.  $NO(g) \longrightarrow \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g)$  at the same temperature is :-

[AIEEE-2012]

(A) 50.0

- (B) 0.02
- (C) 2.5 10<sup>2</sup>
- (D) 4 10<sup>-4</sup>

| JEE-[MAIN] : PREVIOUS YEAR QUESTIONS |   |   |   |   |   |   | ANSWER KEY |   |   | EXERCISE -5[A] |    |    |    |    |    |
|--------------------------------------|---|---|---|---|---|---|------------|---|---|----------------|----|----|----|----|----|
| Que.                                 | 1 | 2 | 3 | 4 | 5 | 6 | 7          | 8 | 9 | 10             | 11 | 12 | 13 | 14 | 15 |
| Ans                                  | С | С | A | Α | D | Α | В          | В | С | В              | D  | D  | Α  | С  | Α  |

# **EXERCISE - 05 [B]**

# JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

- 1. For the reaction CO (g) +  $H_2O \rightleftharpoons CO_2$  (g) +  $H_2$  (g) at a given temperature the equilibrium amount of  $CO_2$  (g) can be increased by : [JEE 1998]
  - (A) adding a suitable catalyst
  - (B) adding an inert gas
  - (C) decreasing the volume of the container
  - (D) increasing the amount of CO (g)
- For the reaction,  $N_2O_5(g) = 2 NO_2(g) + 0.5 O_2(g)$ , calculate the mole fraction of  $N_2O_5(g)$  decomposed at a constant volume & temperature, if the initial pressure is 600 mm Hg & the pressure at anytime is 960 mm Hg. Assume ideal gas behaviour. [JEE 1998]
- 3. The degree of dissociation is 0.4 at 400 K & 1.0 atm for the gaseous reaction  $PCl_5 \Longrightarrow PCl_3 + Cl_2$  (g). Assuming ideal behaviour of all gases. Calculate the density of equilibrium mixture at 400 K & 1.0 atm pressure. [JEE 1999]
- When 3.06 g of solid  $NH_4HS$  is introduced into a two litre evacuated flask at 27 C, 30% of the solid decomposes into gaseous ammonia and hydrogen sulphide. [JEE 2000]
  - (i) Calculate  $K_C \& K_P$  for the reaction at 27 C.
  - (ii) What would happen to the equilibrium when more solid  $NH_4HS$  is introduced into the flask?
- When 1-pentyne (A) is treated with 4N alcoholic KOH at 175 C, it is converted slowly into an equilibrium mixture of 1.3% 1-pentyne (A), 95.2% 2-pentyne (B) & 3.5 % of 1,2-pentadiene (C). The equilibrium was maintained at 175 C. Calculate  $\Delta G$  for the following equilibria.

$$B = A \qquad \Delta G_1 = ?$$

$$B = C \qquad \Delta G_2 = ?$$

From the calculated value of  $\Delta G_1$  &  $\Delta G_2$  indicate the order of stability of A, B & C. Write a reasonable reaction mechanism sharing all intermediate leading to A, B & C. [JEE 2001]

6.  $N_2O_4$  (g)  $\Longrightarrow$  2NO<sub>2</sub> (g)

This reaction is carried out at 298 K and 20 bar. 5 mol each of  $N_2O_4$  and  $NO_2$  are taken initially :

[JEE 2004]

Given : 
$$\Delta G_{N_2O_4} = 100 \text{ kJ mol}^{-1}$$
;  $\Delta G_{NO_2} = 50 \text{ kJ mol}^{-1}$ 

- (i) Find  $\Delta G$  for reaction at 298 K under given condition.
- (ii) Find the direction in which the reaction proceeds to achieve equilibrium.

7.  $N_2 + 3H_2 \Longrightarrow 2NH_3$ 

Which is correct statement if  $N_2$  is added at equilibrium condition?

- (A) The equilibrium will shift to forward direction because according to II law of thermodynamics the entropy must increases in the direction of spontaneous reaction.
- (B) The condition for equilibrium is  $G_{N_2} + 3G_{H_2} \rightleftharpoons 2$   $G_{NH_3}$  where G is Gibbs free energy per mole of the gaseous species measured at that partial pressure. The condition of equilibrium is unaffected by the use of catalyst, which increases the rate of both the forward and backward reactions to the same extent.
- (C) The catalyst will increase the rate of forward reaction by  $\alpha$  and that of backward reaction by  $\beta$ .
- (D) Catalyst will not alter the rate of either of the reaction.

[JEE 2006]

**8.** The value of  $\log_{10} K$  for a reaction A  $\Longrightarrow$  B is :

[JEE 2007]

(Given :  $\Delta_r H_{298K} = -54.07 \text{ kJ mol}^{-1}$ ,  $\Delta_r S_{298K} = 10 \text{ JK}^{-1} \text{ mol}^{-1}$  and

 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ ; 2.303 8.314 298 = 5705)

# JEE-[ADVANICE] : PREVIOUS YEAR QUESTIONS

# ANSWER KEY

EXERCISE -5[B]

- **1**. D
- **2.** Fraction decomposed = 0.4
- **3.** 4.54 g dm<sup>-3</sup>
- **4.** (i)  $K_C = 8.1 10^{-5} mol^2 L^2$ ;  $K_p = 4.91 10^{-2} atm^2$ ,(ii) No effect;
- **5.** 15991 J mol<sup>-1</sup>, 12304 J mol<sup>-1</sup>; B > C > A
- **6**. (i)  $5.705 10^3 J mol^{-1}$ 
  - (ii) Since initial Gibbs free energy change of the reaction is positive, so the reverse reaction will take place.
- **7**. B
- **8**. B

$$\Delta G$$
 =  $\Delta H$  -  $T\Delta S$   
= - 54.07 | 1000 - 298 | 10  
= - 54070 - 2980 = - 57050  
 $\Delta G$  = -2.303 RT  $\log_{10} K$   
- 57050 = -2.303 | 298 | 8.314  $\log_{10} K$   
= - 5705  $\log_{10} K$   
 $\log_{10} K = 10$